AllemangD, Garbac#, Gradzki P,KendallE, TrypuzR. To appeatn:
Neuhaud-, BrodaricB, eds.Proceedingsf the 12thint’'l Conf. (FOIS
2021),Frontiersin Artificial IntelligenceandApplicationsby I0S
Press.

An Infrastructure for Collaborative
Ontology Development

Lessons Learned from Developing the Financial Industry Business
Ontology (FIBO)

Dean ALLEMANG *¢, Pawel GARBACZ "4, Przemystaw GRADZKI %,
Elisa KENDALL® and Robert TRYPUZ 4!

AWorking Ontologist LLC
bThe John Paul II Catholic University of Lublin
¢ Thematix Partners LLC
4EDM Council
¢ MakoLab SA

Abstract. Collaborative development of a shared or standardized ontology presents
unique issues in workflow, version control, testing, and quality control. These
challenges are similar to challenges faced in large-scale collaborative software
development. We have taken this idea as the basis of a collaborative ontology
development platform based on familiar software tools, including Continuous
Integration platforms, version control systems, testing platforms, and review
workflows.

We have implemented these using open-source versions of each of these tools, and
packaged them into a full-service collaborative platform for collaborative ontology
development. This platform has been used in the development of FIBO, the Financial
Industry Business Ontology, an ongoing collaborative effort that has been developing
and maintaining a set of ontologies for over a decade.

The platform is open-source and is being used in other projects beyond FIBO.
We hope to continue this trend and improve the state of practice of collaborative
ontology design in many more industries.

Keywords. ontology development tooling, continuous integration, hygiene test,
collaborative ontology development, FIBO

Introduction

The development of a standard is inherently a collaborative process, regardless of the
nature of the standard or the domain to which it applies. Good standards require input from
a wide variety of subject matter experts from multiple organizations, working together in
a highly distributed environment. The tools and process for developing a standard have to
support collaboration smoothly and transparently. In this paper we focus on the situation
in which one of the goals of the standard is to publish a shared data model or shared

ICorresponding Author: Robert Trypuz; E-mail:fibo@edmcouncil.org

reference data in the form of a formal ontology. This situation poses particular challenges
for collaboration process and infrastructure, and is the focus of this paper. We draw on our
experience in developing FIBO, the Finance Industry Business Ontology, to understand
the challenges that face such a standards development effort, and outline the design of
the infrastructure we have used for several years to manage those challenges.

FIBO evolved out of concerns that arose during the 2008 financial crisis among
individuals who worked together in data governance and management. The most pressing
issue at the time was the need for a shared, common vocabulary, focused on financial
contracts and related concepts, that could be used for analysis and regulatory reporting
purposes. From that time, FIBO has been sponsored and hosted by the Enterprise
Data Management Council (EDM Council)?, a global association for data management
professionals, initially focused on financial services that has since expanded to other
domains. Some selected modules of FIBO have been standardized by the Object
Management Group (OMG)?3, and a new baseline standard is in work. As of the latest
release?, the production subset of FIBO includes roughly 1750 classes, 750 relationships
and attributes, and over 14000 individuals (nominals, reference data and examples). The
development version, which ranges in maturity from “almost releasable” to “really, really
rough”, is more than 40 percent larger.

There are currently three FIBO primary content development teams working in
parallel on different but related topics. In order to coordinate continuous integration of new
and revised material, facilitate collaboration across topic teams, and ensure continuous
quality improvement, leadership and process teams were put in place several years ago.
One of the products of their work is a development framework created to automate aspects
of ontology “unit-level testing", to guarantee a minimum level of quality. The individual
tests are not necessarily novel. Many of them have been derived from, or inspired by, earlier
work on ontology evaluation such as Chimaera [1], OntoClean [2], and OOPS! [3]. What is
new, however, is a portable, open-source infrastructure that automatically runs these tests
as an integral part of the ontology integration and publication process. This framework
is designed for either a single development environment, or cross-organizationally, for
example, for FIBO, and as planned for other ontology standards efforts at the EDM
Council, OMG, and the Industrial Ontology Foundry (IOF)S. To date, in addition to its
use for FIBO, the framework has been successfully deployed at Rensselaer Polytechnic
Institute (RPI)’s Tetherless World Constellation®, for use on several projects.

In this paper we present the infrastructure described above. The approach follows
well-established principles and leverages tools commonly used in software engineering,
treating ontologies as source code. Section 1 describes the FIBO development process,
which is focused on use cases developed within working groups. Section 2 covers our
approach to ontologies as managed source code, and how the infrastructure supports
the development effort, with examples at various steps in the process. Finally, section
3 compares our approach with related attempts at supporting collaborative ontology
development.

2See:https://edmcouncil.org

3See: https://www.omg.org

4See: https://github.com/edmcouncil/fibo/releases/tag/master_2021Q1
5See: http://www.industrialontologies.org

6See:https://tw.rpi.edu

1. Ontology Development Approach

The original motivation for FIBO was the failure of financial institutions and regulatory
agencies to clearly exchange and integrate data about financial contracts and their
counterparties, as demonstrated by the industry’s failure to roll up risk with respect to
those contracts. The initial FIBO use case was to provide an industry glossary that financial
institutions and other market participants can use to meet regulatory requirements such as
Dodd-Frank” in the U.S. and the MiFID II® framework in the EU for regulating financial
markets. That use case was extended to cover additional requirements for data governance,
data management, and enterprise glossaries mandated in the EU by the Basel Committee
on Banking Supervision (BCBS) for risk data aggregation and reporting (BCBS 239).
Over the last few years, we have refined our approach as recommended in [4] to create
instrument- or topic-specific use cases that add incremental value, resulting in significant
progress by each of the working groups. The use cases include several usage scenarios
and a number of competency questions per scenario, which are used to test the efficacy
of the ontology as the work progresses.

The FIBO effort is organized into working groups, each consisting of at least one
ontologist and some number of subject matter experts, which meet weekly to (1) review
the use cases, (2) find areas in the ontologies where gaps remain, (3) refine and extend
the ontologies to address those gaps and other issues raised by users, and (4) develop
examples that answer the competency questions based on the revisions to the ontologies.
Given an issue, use case, or partial use case, such as one scenario, the development process
is roughly as follows:

1. In the context of a working group teleconference, review the existing ontology to
determine what aspects of the ontology can be used to answer the question(s)

2. Identify the specific gap(s) and raise an issue to address the gap

3. Identify any missing concepts and work together to develop definitions and
other annotations for those concepts and any important relationships based on
a combination of appropriate resources (online financial dictionaries, offline
financial dictionaries, ISO and other financial standards, etc.) and record our
findings, discussion, and references in our minutes in the working group wiki

4. Create a branch in GitHub for the issue

5. Identify the ontology(ies) that need to be revised, where in the class hierarchy the
concept(s) belong, and, importantly, whether or not there are existing patterns we
can leverage in order to integrate the material

6. Integrate the new content into the relevant ontology(ies), reusing existing classes
and properties as much as possible, and extending them as needed

7. Runatleast one reasoner and perform SPARQL queries to ensure that the semantics
seem reasonable and that the ontology(ies) remain logically consistent

8. Check the changes into GitHub and push them to a remote branch so that other
members of the working group can review the results, automatically invoking
the RDF serializer described below that ensures consistent serialization of the
resulting RDF/XML via a custom Git hook

7See: https://www.govinfo.gov/content/pkg/PLAW- 111publ203/html/PLAW-111publ203.htm
8See: https://www.esma.europa.eu/policy-rules/mifid-ii-and- mifir/
9See: https://www.bis.org/publ/bcbs239.pdf

9. Create example individuals (or update existing individuals) and test whether or not
the competency question(s) can now be answered by the ontology (as appropriate),
and check-in any examples that might be used as guidance for FIBO users

10. Once the working group members are comfortable with the revisions, perform a
pull request in GitHub to get broader review, which automatically kicks off the
infrastructure presented below; address any issues uncovered as a consequence

11. Once the pull request passes all of the stages in the publication cycle, at least two
qualified reviewers must sign off (currently active members of at least one of the
working groups plus other process team members have this privilege)

12. Finally, one of the process team will merge the pull request after it has been
approved.

We iterate through steps 6-9, as needed, depending on the complexity of the issue and
until we reach consensus on the resulting ontologies. Additional information regarding the
methodology, minimal criteria for metadata and ontology content, and unit-level hygiene
testing is outlined in our ontology guide'°.

Note that the development steps outlined above do not describe aspects of our
methodology with respect to pairwise, pattern-driven development, as presented in [5]. A
"pair programming’ approach that is increasingly pattern driven is applied regularly by the
FIBO content teams for ontology revisions. Neither does it cover our test and integration
process, which includes build out of example content, use of multiple reasoners and rule
engines to ensure consistency and correctness, or validation of results against competency
questions. The focus presented herein is on the automated infrastructure that is used to
support the development process.

2. Ontology as Source Code

The long-term success of the process outlined in the previous section hinges on the ability
to manage incremental change in the ontology (ontologies) over both short and long
development cycles. This dynamic is not unique to ontology development, and in fact is
quite familiar from collaborative software development methods, in which an ontology is
managed as a piece of program source code. In our approach, we take this idea literally,
and treat ontology components as source code, and organize the development using tools
and techniques familiar from software engineering. In particular, we focus on four familiar
areas of software development: Modularity, Version Control, Continuous Integration (CI),
and Testing.

2.1. Modularity and Maturity Levels

Just as is the case with any large software project, components of a large ontology like
FIBO have different governance requirements. These include ownership, speed of update,
and dependencies. Just as is the case for conventional software, modularity is a powerful
tool for managing governance. As an example from the point of view of the FIBO audience,
modularization allows us to express the maturity level of different parts of the ontology,

10See: https://github.com/edmcouncil/fibo/blob/master/ONTOLOGY_GUIDE.md

allowing the community to understand which FIBO ontologies can be used “as they are”
and which ones are still under development and likely to be more volatile.

FIBO is structured as a collection of relatively small ontologies; currently, there are
about two hundred ontologies. Each ontology has its own namespace and is recorded
(as source code) as a single OWL-compliant file, serialized as RDF/XML. Furthermore,
these ontologies are organized into a hierarchical structure that is reflected in a file folder
structure stored on GitHub'!.

At the top level, FIBO currently has ten modules called domains (represented in the
file system as high-level directories). Within these domain areas are one or two levels
of subdomains. In the smallest subdomains (bottom level directories in GitHub), are the
two hundred ontology files. Thus, any ontology has a unique place in the domain/module
hierarchy.

For example, for the Business Entities domain and the Legal Entities module, we
have the following structure:

(FIBO domain) Business Entities

(FIBO module) Corporations
(FIBO module) Functional Entities
(FIBO module) Government Entities
(FIBO module) Legal Entities

(FIBO ontology) Corporate Bodies Ontology

(FIBO ontology) Formal Business Organizations Ontology
(FIBO ontology) Legal Entity Identifier (LEI) Entities Ontology
(FIBO ontology) Legal Persons Ontology

(FIBO module) Ownership and Control
(FIBO module) Partnerships

(FIBO module) Private Limited Companies
(FIBO module) Sole Proprietorships
(FIBO module) Trusts

Each ontology in FIBO is described by one of three maturity levels!?: release,
provisional, or informative. Ontologies marked as release are considered to be stable
and mature, and ready for use by stakeholders. Ontologies marked as provisional are
considered to be under development, so they are less stable, and one can expect changes
occurring in their content more frequently. Ontologies marked as informative have been
deprecated, but are still included for informational purposes because some provisional
concept references them.

2.2. Collaborative Version Control

One of the advantages of viewing ontologies as source code is that we can take advantage
of decades of experience with managing collaboration in code production. The state of
the art in software version control is embodied in a service called GitHub, which has
become the default infrastructure for source code collaboration.

1See: https://github.com/edmcouncil/fibo
12Maturity levels in FIBO are assigned only to FIBO ontologies (so not to FIBO domains or modules).

GitHub’s operation is based on the idea that it is possible to compare two versions
of the same file and display the differences in a simple form, as shown in Figure 1. This
works very well for program code, since a typical change is done using a text editor or an
IDE that make changes directly to the code; any changes show up as simple differences
from one version to the next. This means that if two contributors make changes to the
same file, the changes from each of them can be detected, and then displayed, processed
or even automatically merged.

- <owl:Class rdf:about="&fibo-ind-fx-fx;FxSpotVolatility">

+ <owl:Class rdf:about="&fibo-ind-fx-fx;ExchangeRateVolatility">

<rdfs:subClassOf rdf:resource="&fibo-ind-ind-ind;Volatility"/>

<rdfs:subClass0f>

<owl:Restriction>

<owl:onProperty rdf:resource="&fibo-ind=ind=ind;isVolatilityof"/>
<owl:allValuesFrom rdf: resource="6fibo-fnd=acc=cur;ExchangeRate" />
<owl:onProperty rdf:resource="&fibo-fnd-utl-alx;hasArgunent"/>

S o 00

<owl:someValuesFron rdf:resource="&fibo-ind=fx-fx;ExchangeRateStructure" />
</owl:Restriction>

</rdfs:subClass0f>

<rdfs:label>FX spot volatility</rdfs:label>

<skos:definition>measure of exchange rate fluctuation</skos:definition>

<fibo-fnd-utl-av:explanatoryNote>Mathematically, volatility is the annualized standard deviation of the daily changes in the exchange rat

<rdfs: label>exchange rate volatility</rdfs: label>

<skos:definition>statistical measure of the rate of change in the rate at which one currency can be exchanged for anothers</skos:definitic

<fibo-fnd-utl-av:usageNote>Volatility is modeled here using a structured collection, comprised of a series of individual exchange rates (
</owl:Class>

e R

Figure 1. GitHub ‘diff” shows the changes between two snapshots in unified diff format.

GitHub falls short in a situation in which code is not directly edited as text files,
as is often the case when editing ontologies. Typically, a contributor to an ontology will
want to view and edit the ontology with a user interface tuned specifically to ontology
development. The actual text files that serve as the ‘golden copy’ of the ontology are the
output from such tools.

The RDF standard includes a number of serialization options (e.g., Turtle [6] and
RDF/XML [7]); each of these specifies a syntax for writing down triples in a text
file. But the relationship between triples and a file is not one-to-one; any set of triples
can be written down in a wide variety of ways. This is not an unusual situation; even
conventional programming languages are agnostic about things like variable names, the
order in which variables and subroutines are declared, etc. The difference is that for
most programming languages, a human decides these things when they edit the text file;
when an ontology is edited through a graphical user interface, these decisions are made
by the ontology management application. Each of these many tools !> makes different
serialization decisions. This means that two versions of the same file that do not differ at
all could be saved in files that are vastly different - thwarting the basis on which GitHub
works.

There are three basic approaches to this problem:

* Standardization on a single tool. If this tool is consistent in the way it serializes
triples, then similar ontology versions will be written in similar files, and GitHub
can work appropriately. Most modern ontology editors satisfy this condition.

* Use a tool with version control built in. An example of such a system (working
with RDF triples) is MOBI 4.

Bhttps://www.w3.0rg/2001/sw/wiki/Tools
4https://mobi.inovexcorp.com/

* Post-process files with a stable serializer. A hybrid approach is to allow each
contributor to use whatever tool they like, but process each ontology file after it is
written and before it is committed to version control. This process must preserve
the content of the file (same triples in as out), but serialize it in a consistent way.

Each of these approaches has its advantages and disadvantages. Using a single tool
has the advantage that contributors can collaborate easily, but has the disadvantage that
it does not allow contributors to use whatever tool they choose. Using a tool with version
control in it simplifies the process quite a lot, but also limits tool choices. These approaches
are sometimes appropriate in an enterprise setting, where there are many motivations
for controlling software use. Using a stable post-processor allows contributors to use
whatever tool they like (and even encourages the development of new tools for specific
uses). A disadvantage of this approach is that it requires extra infrastructure for each
collaborator; they must install the serializer before they can contribute. This approach is
more appropriate in a wide collaboration setting, where different collaborators come from
different organizations. Not surprisingly, this latter approach is the approach that FIBO has
taken. The EDM Council has provided an open-source serializer'>. This allows ordinary
text comparison tools to operate on the OWL files that represent the FIBO ontologies,
and, in turn, allows FIBO developers to follow any workflow based on GitHub. In the case
of FIBO, we have integrated GitHub with a continuous integration platform (see section
2.3 below) that runs a number of services and tests over each committed change.

2.3. Continuous Integration

FIBO uses a popular continuous integration (CI) platform called Jenkins; but any of
several platforms perform similar functions. The job of Jenkins is to coordinate actions
that will be automatically taken whenever a change is committed to GitHub.

When a change to is committed, it triggers a “chain of actions” (which is called a
“pipeline”), in Jenkins, as shown in Figure 2.

+ fibo < 351 Pipeline Changes Tests Adifacts & @ 3] X

Branch: master @ 38m 44s Changes by Elisa Kendall

Commit: 75ecd8f ® 2 days ago Push event to branch master

Build Derived Build Final Ontology Viewer
Start Setup Hygiene Tests Build Ontology Products Content Publish Update End

—0 o o } o [o [
Build glossary
L]

Build vocabulary

Figure 2. FIBO’s continuous integration and continuous delivery pipeline system.

The sequence of stages in the pipeline is as follows:

* “Setup” prepares the infrastructure for the next stages,
* “Hygiene Tests” checks whether FIBO follows all the principles from the FIBO
ontology guide

15See: https://github.com/edmcouncil/fibo/blob/master/ CONTRIBUTING.md#fibo- serialization-tools

“Build Ontology” is responsible for creating ontology files in different serializations,
“Build Derived Products” creates FIBO derived products such as SKOS version of
FIBO or FIBO glossary (a tabular version of FIBO containing labels and definitions,
see below)

* “Build Final Content” combines the results of the building of all the products,

* “Publish” places files on the webserver,

* “Ontology Viewer Update” sends an “update” message to the Ontology Viewer

The many services used by Jenkins to manage FIBO updates are included in a
software module called the ontology-publisher'®. The ontology-publisher is deployed
as a docker image, built on the basis of the Dockerfile!” and made available on the
public EDMC Docker Hub account 3. The workhorse of this image is the “publish.sh”
script!®, which enables the execution of all steps described in the caption of figure 2.
The “ontology-publisher” uses the following components: Python libraries RDFLib*” and
PyLD?!, EDMC’s rdf-toolkit??, Apache Jena?® and other. It is built in a modular way,
which allows for the flexible addition of new steps of the process and their easy integration
into the Jenkins pipeline.

2.4. Testing

In conventional software development, testing is a large component of any development
activity. FIBO uses Jenkins to perform a wide range of automated tests.

FIBO is developed by a heterogeneous community. In order to ensure consistency
in contributions from a variety of community members, the FIBO team has developed a
set of hygiene tests that are run automatically each time a FIBO change is committed to
GitHub. FIBO organized hygiene tests into three categories:

1. errors
2. production errors
3. warnings

All three categories of tests run against the full FIBO ontology with the proposed
change. If a test fails, Jenkins will take an action depending on the category of the test. If
a warning test fails, a warning is issued, and the developer and the FIBO team are made
aware of the transgression. In this case, ontology processing continues. If an error test
fails, then processing stops, and no more steps are taken. The change is considered a fatal
error, and it cannot be accepted. In the case of a production error, the same test is run
over the production version of FIBO and then separately over the development version of
FIBO; a failure in the production version of FIBO is treated as fatal (just like a "vanilla"
error), whereas a failure in the development version of FIBO is treated as a warning. If
no fatal error occurs, the change moves on to a review phase.

16https://github.com/edmcouncil/ontology-publisher
https://github.com/edmcouncil/ontology-publisher/blob/master/Dockerfile
18https://hub.docker.com/repository/docker/edmcouncil/ontology-publisher
Yhttps://github.com/edmcouncil/ontology-publisher/blob/master/publisher/publish.sh
2Ohttps://rdflib.dev/

2l https://github.com/digitalbazaar/pyld

22https://github.com/edmcouncil/rdf-toolkit

2https://jena.apache.org/

The hygiene tests are implemented as SPARQL queries that are called by Jenkins
using the Jena ARQ processor.2* An example of such test can be found in Listing 1.

Once a commit has passed the tests, it is eligible to become a pull request. This
is a concept that is common in git-based software development, whereby a contributor
proposes a change to the ontology, and others approve it and merge it into the main,
published branch. In the case of FIBO, a contributor proposing a pull request asserts that
they have read and understood the FIBO workflow, including all the tests listed above,
and signs the Developer Certificate of Origin (DCO) certifying that he/she has the right to
submit the proposed change under the MIT license. The Continuous Integration system
validates that these tests have passed.

banner Definitions shouldn’t be circular — this finds direct circularities therein.

SELECT DISTINCT ?error ?definition ?label

WHERRE

{
?s rdfs:label ?label .
?s skos:definition ?definition .
FILTER NOT EXISTS {?s a owl:NamedIndividual} .
FILTER (RBGEX(?definition, "\W'+?label+"\W"))
FILTER (CONTAINS(str(?s), "edmcouncil"))

BIND(concat("PRODERROR: Definition of ",str(?s)," is immediately circular ") AS ?error)

Listing 1: Hygiene test example

Once the pull request has been made, FIBO has a board of reviewers, two of which
must approve the change, at which point (after a minimum review period has passed),
it is merged into the main branch. This assures that changes make it in to FIBO in a
timely fashion after undergoing peer review. This sort of workflow is typical of large,
open-source code projects, in which the code undergoes some sort of unit and integration
tests before it is accepted into the main branch. In the case of ontologies, the process is
the same, but the tests are tailored to ontology development in OWL.

As of the last run our hygiene test finds zero errors or warnings in the production
subset of FIBO and around 1000 warnings in the development subset. The latter number,
although significant, is constantly decreasing over time.

2.5. Ontology Derived Products

The canonical version of FIBO is rendered in the OWL 2 DL language. Use of
combinations of exact qualified cardinalities, intersections, and existential quantification
to differentiate financial instruments from similar variants requires greater expressivity
than is available in OWL 2 RL. For example, a fixed-float interest rate swap is a swap that
has exactly two swap legs, one of which is a fixed-rate debt instrument and the other is a
floating-rate debt instrument, as shown in Figure 3.

24 All tests can be found on https://github.com/edmcouncil/fibo/tree/master/etc/testing/hygiene.

interest rate Swap 1eg Jafexchanges-(2..2)(fied float interest rate swap

/

and

exchanges(17]
-
floating interest rate leg
79 =l

fixed interest rate leg

Figure 3. fixed-float interest rate swap expressed in OWL.

On the other hand, many data management applications don’t require this level of
detail; they really just want to know that a fixed-float interest rate swap has a fixed-rate
leg and a floating-rate leg, more like the simpler diagram shown in Figure 4.

floating interest rate leg
exchanges_

\ﬁxed float interest rate swap]
exchangés

fixed interest rate leg
Figure 4. Fixed-float interest rate swap, in simplified form.

For this reason, FIBO is published in alternate forms that are faithfully generated
from FIBO, but that include less information than the prescriptive model. For example,
the structure in Figure 4 is automatically derived from the logical ontology in Figure 3; it
isn’t as detailed, but approximates the information. Specifically, we provide two derivative
version of FIBO:

1. FIBO as a SKOS vocabulary
2. FIBO as a data dictionary

SKOS FIBO vocabulary expresses all FIBO classes as individuals in the spirit of SKOS.
These individuals are related by the respective object properties. This is the structure that
is shown in Figure 4.

Inmany cases, data managers are accustomed to seeing data elements in a spreadsheet,
with names, synonyms and definitions in a tabular form. This typically expresses much
less information than is available in an OWL ontology, but is amenable for human review,
and for use in glossary applications. Figure 5 shows an example of this sort of display.

Term Type Ontology Definition ‘GeneratedDefinition
fixed float interest [Class. interest Rate Swaps [vanilia swap, fixed-float swap inwhich fixed interest [itis a kind of interest rate swap.
rate swap lomtology payments on the notional are exchanged
for floating

Figure 5. Data dictionary entry for the fixed-float interest rate swap.

FIBO data dictionary is a single table that includes all FIBO classes, properties, and
describes the basic metadata features of each one.

2.6. Ontology Viewer

Finally, in order to enhance the collaborative development of FIBO, we provide a web
application to browse through its contents. The Ontology Viewer is a REST API-based
web application written in Java that allows accessing the FIBO structure and its content
in a user-friendly way. It is an open-source community project hosted by EDMC?>,

The Ontology Viewer provides an interactive experience that reflects all of the features
we have described here: the modularity of FIBO is reflected in the navigation functionality
of the viewer. The maturity of each ontology is shown. For components of the ontologies
(classes and properties), they are uniformly documented with labels, synonyms and logical
relationships. These are expressed in words (describing the logical relationships) as well
as diagrams. Every mention of a resource in FIBO is a hyperlink that leads to more
information about that entity. In addition to the human-readable display, the full URI of
each resource can be copied with a single click, for use by developers when composing
SPARQL queries.

The Ontology Viewer has some unique advanced features; in addition to a full-text
search, it also includes a time machine. Every proposed pull request is registered in the
Ontology Viewer; a reviewer can select which version of FIBO is to be viewed (including
new, proposed versions as well as old, released versions). This feature is invaluable for
reviewers who want to understand the ramifications of a proposed change, or to research
how FIBO has changed over the years.

Ontology Viewer always presents up-to-date content; it is kept current as part of the
continuous integration logic described in section 2.3. The FIBO viewer is available to the
public at https://spec.edmcouncil.org/fibo/ontology.

3. Related Work

Open-source tools for collaborative ontology modeling, such as WebProtégé[8], are
widely used in the knowledge representation community for specifying ontologies in the
Web Ontology Language (OWL)[9]. There are fewer common processes and downstream
collaboration environments, however, for development involving multiple, independently
evolving ontologies, that must be kept in sync and that ensure the resulting ontologies
meet the quality levels necessary for publication of an international standard.

As far as we are aware there is no publicly available framework for continuous
ontology development with the same level of support for distributed, social development
as the infrastructure described above. There are however a couple of web applications
that provide some of the capabilities we offer — in some cases surpassing ours in terms of
flexibility or scope?®.

There are a number of frameworks available today for collaborative ontology
development. Most of these did not exist, however, when our work on the FIBO

23See https://github.com/edmcouncil/onto-viewer
26We will not discuss ontology editors here although some of them, like VocBench [10] or WebProtege [8],
do provide support for collaborative ontology development.

infrastructure was initiated. The Ontology Development Tookit (ODK)?’ was developed
in parallel with our work to assist the OBO Foundry community?® in standardizing their
collaborative ontology development workflows using GitHub. It supports methods of
extracting various subsets of an ontology, including some axiom stripping and relaxation
of axioms which we do not do in order to produce versions of a baseline ontology that
can interoperate with other ontologies for certain purposes. It is possible that we will take
advantage of some of their insights for FIBO users over time. ODK does not, however,
automatically publish revisions covering the alternative representations, including the
"flattened” SKOS Vocabulary and data dictionary that the FIBO user community requires>’
OBO Foundry community members and others also use the ROBOT*" semantic diff
tool as a part of their process. While such a tool is quite useful, and some FIBO users
also use ROBOT as part of their workflow, ROBOT does not serialize an ontology to
support the file-oriented diff process that the RDF Toolkit provides, which has proven to
be essential for visual comparison in GitHub for FIBO users. Another such framework
is OnToology, a web-based tool designed to automate part of the ontology development
process in a collaborative environment, i.e., in GitHub. When one registers an ontology
with OnToology, the tool will monitor for changes and upon each (committed) change
it will generate a new pull request that contains: (i) the ontology documentation (with
several proposals for diagram representation), its evaluation, and publication of the
ontology in the user’s repository[11]. VoCol is an integrated environment to support
version-controlled vocabulary development. It supports a round-trip model of vocabulary
development: modeling, population, and testing. To facilitate modeling VoCol allows users
to formulate queries which represent competency questions for testing the expressivity and
applicability of a vocabulary. To support testing, it provides the automatic detection of “bad
smells” in the vocabulary design by employing SPARQL patterns. For modeling purposes,
VoCol integrates a number of techniques facilitating conceptual work: automatically
generated documentation and visualizations provide different views on the vocabulary as
well as an evolution timeline supporting traceability[12].

There also exist various tools that automatically check the level of compliance of the
ontology development against a set of logical and conceptual requirements. OOPS! is a
web app that scans ontologies looking for potential pitfalls that could lead to modelling
errors.’! OOPS! is intended to be used by ontology developers during the ontology
validation activity, particularly during the diagnosis task. OOPS! currently catalogs 41
checks, of which 33 are automated. Some of these automated checks overlap with the FIBO
checks: PO1-P03, P08, P32, P34, and P35.[13]32. RDFUnit is a debugging framework
that can run automatically generated (based on a schema) and manually generated test
cases against an RDF — either inputted directly or via an endpoint®3. The test case
definition language is SPARQL, which proved to be convenient to directly query for
identifying violations. For rapid test case instantiation, a pattern-based SPARQL-template

27See https://github.com/INCATools/ontology-development-kit

28See https://www.obofoundry.org

29 A5 of this writing, we have not had the resources to test whether or not ODK supports the level of analysis
over the tens of ontologies in the imports closure of some changes as a part of the testing and publication process
that the FIBO infrastructure does.

30See http://robot.obolibrary.org/

31 http://oops.linkeddata.es/

32Note that OnToology uses OOPS! for its evaluation service.

3 https://aksw.org/Projects/RDFUnit.html

engine, running over a library of common patterns is supported where variables can be
easily bound into patterns.[14]. RDFUnit thus corresponds our hygiene test component,
in fact it provides more flexible functionality due to the automatic test generation.
OntoSeer is a recent Protege plugin that provides automatic recommendations while
ontology development [15]. These recommendations concern, among other things, IRIs
for classes and properties, subsumption hierarchy structure, and recommendations based
on the repository of ontology design patterns (http://ontologydesignpatterns.org/). We
may consider adapting it for use with the patterns we use in FIBO in the future.

Finally, there is an emerging stream of research focused on ontology evolution,
including visualization of changes in ontology design. ChImp, a Protege plugin, is an
instance of this approach. It visualizes the diff between the current and the previous state
of the ontology, its impact on logical consistency, and the customized metrics of on how
the diff changed such aspects as the property to class ratio or the annotation richness[16].

4. Future Work

The number and nature of the SPARQL queries we run has increased considerably over
the last 18 months, but more tests can be added. FIBO has evolved to be increasingly
pattern oriented, as mentioned above, with recent focus on situational patterns such as
ownership and control. The patterns are complicated, and it would be helpful to add
tests that look for issues in their application, potentially leveraging the approach taken
by OntoSeer. The same is true for other patterns, such as those involving time, payment,
dividend, and other schedules, and new patterns that emerge in time. Our hope is for the
framework to be widely used, so organizing the tests to allow other implementations to
pick and choose which ones they care about and ignore others would be useful. We also
want to make it easy for others to contribute new tests and ultimately catalog them in such
a way that makes the tests searchable. Finally, we plan to integrate feedback from other
implementations to evolve the framework to facilitate usage outside of FIBO.

5. Conclusion

Our experience managing FIBO, a collaborative, standardized ontology development
effort, has given us some insight into how to manage such projects. The effort is daunting,
and we don’t claim to have got every decision right over the decade of FIBO development
and maintenance; but we have learned from our mistakes, and have incorporated them
into an open ontology development environment. Along the way, we realized that many
of the challenges we face are common to any collaborative software effort, and so we
have drawn on the experience of hundreds of open software projects to adapt their best
practices to the unique requirements of ontology development.

But we also found that some challenges are unique to ontology development. Unlike
most software development, many phases of ontology development are done using
graphical tools, so that the ontology files themselves are not directly edited by the
developers, This places special requirements on the infrastructure to enable collaboration.
Ontology testing is possible, but unlike most software, there isn’t a notion of "running" an
ontology; you can draw inferences, and run queries over it, but there isn’t an "input/output”
relationship that specifies the desired behavior.

Despite these differences, we have found the parallel between code management
and ontology management to be very productive, and that the workflows (e.g., commits
and pull requests) and tools (version control, continuous integration) from software
management do in fact apply well to ontology development.

It is our hope that we can interest more ontology development projects in using and
contributing to this effort, providing much needed support across many communities and
industries.

Acknowledgments

Many people have contributed FIBO and to the development, deployment, and maintenance
of the infrastructure over the last decade. We would like to thank Mike Atkin and Mike
Bennett for the dedication and hard work that launched FIBO, including the work they
did to bring countless skeptical bankers, vendors, and consultants together to create the
content at the heart of the ontologies. We would also like to recognize Dennis Wisnosky for
his vision, establishing the original structure and teams that enabled scalable development
of the FIBO content, and for developing the overall Build-Test-Maintain-Deploy process
that led to the creation of the infrastructure. We also want to thank Anthony Coates and
Omar Khan for their work on the RDF Serializer, and Jacobus Geluk and Pete Rivett for
their contributions to the infrastructure.

References

[1] McGuinness DL, Fikes R, Rice J, Wilder S. The Chimaera Ontology Environment. In: AAAI/IAAL
AAALI Press / The MIT Press; 2000. p. 1123-4. Available from: http://dblp.uni-trier.de/db/conf/aaai/
22ai2000.html#McGuinnessFRW00.

[2] Guarino N, Welty C. A Formal Ontology of Properties. In: Dieng R, Corby O, editors. Knowledge
Engineering and Knowledge Management Methods, Models, and Tools. Springer, Berlin, Heidelberg;
2000. p. 97-112. Available from: https://www.researchgate.net/publication/2362508_A_Formal_
Ontology_of_Properties.

[3] Poveda-Villaléon M, Gémez-Pérez A, Sudrez-Figueroa MC. OOPS! (OntOlogy Pitfall Scanner!): An
On-line Tool for Ontology Evaluation. International Journal on Semantic Web and Information Systems
(IISWIS). 2014;10(2):7-34.

[4] Kendall EF, McGuinness DL. Ontology Engineering. Synthesis Lectures on the Semantic Web:
Theory and Technology. Morgan & Claypool Publishers; 2019. Available from: https://doi.org/10.2200/
S00834ED1V01Y201802WBEO018.

[5] Shimizu C, Hirt Q, Hitzler P. MODL: A Modular Ontology Design Library. In: Janowicz K, Krisnadhi
AA, Villalon MP, Hammar K, Shimizu C, editors. Proceedings of the 10th Workshop on Ontology Design
and Patterns (WOP 2019) co-located with 18th International Semantic Web Conference (ISWC 2019);
2019. p. 47-58.

[6] Carothers G, Prud’hommeaux E. RDF 1.1 Turtle. W3C; 2014. Available from: http://www.w3.org/TR/
2014/REC-turtle-20140225/.

[7]1 Schreiber G, Gandon F. RDF 1.1 XML Syntax. W3C; 2014. Available from: http://www.w3.org/TR/
2014/REC-rdf-syntax- grammar-20140225/.

[8] Horridge M, Gongalves RS, Nyulas CI, Tudorache T, Musen MA. WebProtégé: A Cloud-Based Ontology
Editor. In: Companion Proceedings of The 2019 World Wide Web Conference. New York, NY, USA:
Association for Computing Machinery; 2019. p. 686-689.

[9] Bao J, Kendall EF, McGuinness DL, Patel-Schneider PF. OWL 2 Web Ontology Language
Quick Reference Guide (Second Edition). W3C; 2012. Available from: https://www.w3.org/TR/
owl2-quick-reference/.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Stellato A, Fiorelli M, Turbati A, Lorenzetti T, Gemert W, Dechandon D, et al. VocBench 3: A
collaborative Semantic Web editor for ontologies, thesauri and lexicons. Semantic Web. 2020 05;11:1-27.
Alobaid A, Garijo D, Poveda-Villaléon M, Santana-Perez I, Ferndndez-lIzquierdo A, Corcho O.
Automating ontology engineering support activities with OnToology. Journal of Web Semantics.
2019;57:100472.

Halilaj L, Petersen N, Grangel-Gonzilez I, Lange C, Auer S, Coskun G, et al. Vocol: An
integrated environment to support version-controlled vocabulary development. In: European Knowledge
Acquisition Workshop. Springer; 2016. p. 303-19.

Goémez-Pérez A. Did You Validate Your Ontology? OOPS! The Semantic Web: ESWC 2012 Satellite
Events: ESWC 2012 Satellite Events, Heraklion, Crete, Greece, May 27-31, 2012 Revised Selected
Papers. 2015;7540:402-7.

Dimou A, Kontokostas D, Freudenberg M, Verborgh R, Leghmann J, Mannens E, et al. Test-driven
Assessment of [R2] RML Mappings to Improve Dataset Quality. In: Proceedings of the 14th International
Semantic Web Conference: Posters and Demos; 2015. p. 747-58.

Bhattacharyya P, Mutharaju R. OntoSeer: A Tool to Ease the Ontology Development Process. In: 8th
ACM IKDD CODS and 26th COMAD. ACM; 2021. p. 428-8.

Pernischova R, Serbak M, Dell’ Aglio D, Bernstein A. Chlmp: Visualizing Ontology Changes and their
Impact in Protégé. In: Proceedings of the Fifth International Workshop on Visualization and Interaction
for Ontologies and Linked Data co-located with the 19th International Semantic Web Conference (ISWC
2020). Ceur — Workshop Proceedings; 2020. p. 47-60.

